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Abstract 

The difficulty of pressure discontinuity in the two-fluids formulation, caused by surface tension at the interface, can 
now be resolved by a new concept we call ‘surface tension thickness’. It removes one of the major barriers that the 
conventional two-phase flow formulation has elicited : the ill-posedness of the differential equation system. The three 
sets of real eigenvalues we have found at the present formulation represent such existing two-phase flow regimes as the 
homogeneous, slug, and separated flows. The pressure wave propagation speeds in the two-phase flows predicted by the 
present formulation show good agreement with the experimental data. 0 1998 Elsevier Science Ltd. All rights reserved. 

Nomenclature 
CI interfacial area intensity 
A interfacial area 
A, B coefficient matrices 
c constant 
C speed of sound 
E source vector 
H state vectors 
I identity matrix 
L bulk modulus 
p pressure 
R radius of bubble 
t time 
2’ velocity 
V control volume 
s space coordinate. 

Greek symbols 
a void fraction 
6 surface tension thickness 
i eigenvalue of a matrix 
p density 
cr surface tension. 

* Corresponding author. 

Subscripts 
i interface 
k index for each fluid 

Superscript 
- 1 inverse of matrix. 

1. Introduction 

It has been well known that the majority of the differ- 
ential equation systems governing the two-fluids flow 
constitute an ill-posed initial value problem due to their 
complex characteristics [ 1, 21. Researchers have 
attempted in the past without much success to render 
hyperbolic property to the equation systems by mod- 
ifying some of the existing terms. In the ref. [3], derivation 
of the two-fluids equation is given. 

In the present paper, the pressure discontinuity at the 
two-fluids interface is adequately treated by a new con- 
cept called ‘surface tension thickness’. Taking the change 
of interfacial area into account in the momentum equa- 
tions, we have been able to show that the equation system 
has real eigenvalues that depend upon the effective bulk 
moduli associated with the surface tension. Such two- 
fluids flows as the homogeneous. slug, and separated 
flows are the examples having real eigenvalues in the 
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present formulation. We will show that the pressure-wave 
propagation speeds represented by these real eigenvalues 
are very physical and comparable with the experimental 
data. The pattern of characteristic roots in the parameter 
plane shows, for very small surface tension fractal-like 
features much observed in chaos. 

2. Classification of pressure discontinuity 

The basic two-fluids equation system, based on macro- 
scopic relationship among the instantaneous area-aver- 
aged values for all state and flow parameters. takes the 
following form for the inviscid and one-dimensional 
flow : 

(1) 

wherea,+nz= l,andk= 1,2. 
Young and Laplace [4] gave the fundamental equation 

of surface tension byp2 -p, = 20/R, for a sphere of radius 
R,. Since it is known that the ill-posedness of the equation 
system is caused by the ill-treatment of the pressure dis- 
continuity at the interface, we reformulate Young and 
Laplace’s equation using the concept of surface tension 
thickness. We assume here that the film thickness 6 
between the inner radius Rl and outer radius R, is very 
small as shown in Fig. 1. Then, we can write 

Fig. 1. Thin film of thickness 6 separates the inner sphere of 
radius R, (volume V2) and the outer sphere of radius R, (volume 
I;,). The midsphere has radius R, = (RZ+ R,):2 and surface area 
A,. 

(3) 

Here Ri represents either Rz + 6:2 or R, - 6/2, namely, the 
distance from the sphere center of the midplane of the 
thin film. The surface tension thickness 6 then can be 
regarded as a hypothetical interfacial thickness stated 
earlier in the statistical mechanics. The surface increment 
of the interfacial sphere, AA,. caused by the increment of 
its radius, AR,, can be correlated vvith the increment of 
the inner and outer sphere volumes, A V, and A V2, by 

(4) 

(5) 

where V is V, + V2. We now assume that the pressure 
discontinuity has phasic components as 

Pz-PI =b-/&)f(Pr-PI) (6) 
where pi is a hypothetical interfacial pressure. Likely. we 
split the term o/6 into the plastic components of bulk 
moduli based on the concept of surface tension thickness 
[5--71 : 

The term L, and L2. corresponding to the conventional 
Lagrangian multipliers [g], play a very important role by 
distinguishing the two fluids in the system characteristics. 

For the limiting case. AR, + 0, we can reduce equation 
(4) multiplied by a factor Z~,:i.r and equation (5) mul- 
tiplied by ?cc,/Ss to following forms, respectively. 

and 

(9) 

Using the identity ?ppzj’c?-u = ?p,/?.\-, obtained from equa- 
tion (3) for constant D and 6, and the definition of acous- 
tic speed, Ci = Jpc :C:pi, we can rewrite the conservation 
equations as 

mass : 

ph;;-+!L!?L 
c; 8.u 

(10) 
momentum : 

(1 I) 
where rt is the exponent denoting liquid for n = 1 and gas 
for n = 2 for the model of a gas bubble in the liquid. The 
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above partial differential equations finally take a compact 
matrix form 

A(H); +B(H) g = E(H) (12) 

where H is the state vector made of the four primitive 
variables; al, pz and flow speeds ~a,, 11:. The eigenvalues 
of the coefficient matrix G = A- ’ * B of equation (12) 
are determined from the characteristic equation, 
Det(G-iI) = 0. According to Courant and Hilbert [9], 
the matrix G is hyperbolic at H if and only if G has a set 
of characteristic values with elements all real and a set of 
characteristic vectors that is complete. This case holds 
true when the derivative &,lZ.u in equation (I 1) can be 
expressed as a function of the state vector H, which is 
normally practice in the experimental two-phase flow 
studies. 

We will now show that the characteristic equation has 
three complete sets of four real eigenvalues which depend 
on the effective bulk moduli L, and Lz. It is then shown 
that the mathematical ill-posedness of the two-fluids flow 
formulation is, indeed, eliminated by the concept of sur- 
face tension acting on a .thin film’. 

The effective bulk moduli, L, and L,, can be obtained 
from the simplified physical models as follows. First. for 
the slug flow regime, there is no elastic interaction 
between the two fluids while the acoustic wave traveling 
in one fluid is not disturbed by the other fluid. The total 
time taken by the acoustic wave to travel in a column of 
slug-flows is then equal to the sum of the propagation 
time taken in each phase of the slug column made of a 
single phase. In other words, the effective bulk modulus 
of each phase is no longer different from that of the single 
phase : 

L, = p,c: (13) 

Lz = pzc;. (14) 
Mixture bulk modulus of the two fluids takes, on the 
other hand, the combination form 

L =-Vdp=-v dP dp 
,I! 

dV dV, +dV, 
= v- 

V, dp V-. dp -~- c _.I-_ 

where L,,, and L,,, are the bulk moduli of the single 
phases. For the liquid-gas two phases, it clearly holds 
that L,,, << L,,,. Then, the above equation indicates that 
the mixture bulk modulus is closer to that of the gas than 
that of the liquid. 

For the homogeneous two-fluids flow, assuming that 
the two fluids have the same averaged effective bulk 
modulus, we can approximately take the effective bulk 
moduli as 

(16) 

(17) 

In case of the separated two-fluids flow, it is known 
that the pressure wave in a gas is not transmitted into the 
liquid but most of it is reflected; otherwise, the wave 
could change into capillary waves on the liquid surface. 
Unfortunately, detailed mechanism of pressure wave 
propagation into the parallel interface has not been well 
analyzed yet. We set here the values of Lk approximately 
as follows : 

L, =o (18) 

L2 = p>cg. (1% 

The eigenvalue A, is the effective acoustic speed in the 
liquid and ix is that in the gas phase, both influenced by 
the elasticity of the two fluids. They are distinguished 
from the acoustic speed in the single phase. The above 
eigenvalues are in good agreement with the experimental 
data [lo] and show values nearly identical to the theor- 
etical result [l l] based on the elastic theory; see Table 1 
and Fig. 2. 

3. Surface tension effect in the two-fluids equation 
system 

We will show that the eigenvalues convey significant 
physical meaning in the parameter plane, even outside of 
the three physical regimes shown in Table 1. The fourth- 
order characteristic equation can be written as 

where, 

-K,(i-r,)‘+K, =0 (20) 

L,x,CS +c:c;cr2p, 
Kz = -- 

x,p,c: +a,p?Ci 

and 

Other than the three sets of four real eigenvalues shown 
in Table 1, we could not obtain analytic form of the roots. 
However, numerical calculation can be performed point 
by point to check whether the roots are real or complex. 
For example. we set relatively a violent mixing mode by 
taking CI, = CQ = 0.5. c, = 10, c2 = 20 m SK’ for saturated 
water-vapor at the atmospheric pressure. In the para- 
meter plane of Fig. 3(a) and (b), the marker %‘, ‘O’, and 
‘m’ stands, respectively, for the case of four real roots, 
two reals and a pair of complex, and two reals and a 
double root. No real roots could be found in the rest of 
the plane. Figure 3 (b)-(d) show small regions sequen- 

tially zoomed-up from Fig. 3(a). 
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Table 1 
The acoustic speed in each phase of physical flow regimes 

Models 

Flow regime Present eigenvalues 

Homogeneous flow 

Slug flow 

Separated flow 

1600 

( I,1 
Pressure:,.72 bar, Henry el.al. (1971) Pressure:,.72 bar, Henry el.al. (1971) 

Separated flow 
a- - 

Dispersed flow 
(Homogeneous mtxiure) 

0 , I I I I 

0.00 0.20 0.40 0.60 0.80 1 .oo 
Void fraction (%) 

Fig. 2. Total acoustic speed is given by i,,?l/(c(li, +cc,l,) for the 
slug and homogeneous flows. For a vertical pipe, it is measured 
at the bottom while a speaker is placed at the top. For a separated 
flow in the horizontal pipe, it is measured only in the air side 
and compared with 1, in Table 1. 

The root pattern near the origin, for L, - 0 and L, - 0, 

is especially noteworthy. The characteristic polynomial, 
P&), can be simplified by the Galilean transformation 
0, + II’, v2 -+ - ~1, where w = (vl-1),)/2. Then, P4 is 
reduced to 

P4(A) =(A’-w2)2-K,(i+w)Z-KKZ(~-w)2+K~. 

(21) 

Nugyen results 

With the condition L, - 0 and L, - 0, the above equa- 
tion is further reduced to 

P4(Iz) 2 ;14+aAz+hi+r 

where 
(22) 

a = -2(KJ + 5) 

h = -4w[ 

and 

Since the relative velocity, 11’ = L’~-I’,, is very smatl when 
compared with the acoustic velocities, C, and Cz, for most 
cases of two-phase flow, the above polynomial becomes 
symmetric about MI = 0 as 

P,(i) 2 I’(i2 -25). (23) 
This polynomial has “W” shape curve as shown in Fig. 
4. Because this curve will be shifted a little by slight 
change in the values of L, and Lz, a variety of roots 
(complex, double, or two reals) can appear near the 
origin, i = 0, in Fig. 4. This result clearly shows recursive 
pattern of roots as shown in Fig. 3(c) and (d), which are 
sequentially zoomed-up from a small region. It reminds 
us of the fractal-like patterns of stars in the cosmos. Here, 
the markers ‘m’, ‘0’. and ‘a‘ in Fig. 3(c) and (d), the 
denotation of which is changed for plotting convenience, 
are equal to the markers ‘. ‘. ‘O’, and ‘H’. respectively. 
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Fig. 3. (a) Parameter plane showing nature of the roots; (b), (c) and (d) are zoomed-up maps of small regions. 

in Fig. 3(a) and (b). From this result, one can clearly see 
why the classical equation system of the two-fluids model 
has so much instability, even by a very slight disturbance 
near the origin where the surface tension is assumed neg- 
ligibly small. Only positive values of the effective bulk 
moduli L, and L, are physically allowed. In Fig. 3(b), 
the point (L,, L2) = (1.9 x IO’, 0) then forms a transition 
point bridging the homogeneous or separated flow regime 
and the slug flow regime for the given void fraction, since 

there is no other passage than this particular point. The 
two effective acoustic speeds, A, and I,, take almost ident- 
ical values at this point, about 455 m SC’ 

4. Conclusion 

One of the major causes of ill-posedness in the two- 
fluids equation system has been eliminated in the present 
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Fig. 4. The behavior of characteristic polynomial for negligibly 
small surface region. 

paper by introducing a new concept called ‘surface ten- 
sion thickness’. It proved that the weakly well-posed 
equation system derived from this new concept, ‘weakly’ 
in the sense that the source vector E of equation (12) still 
can have derivative of unknowns, has three complete sets 
of real eigenvalues that depend on the values of effective 
bulk moduli, L, and Lz. When the surface tension efiect is 
negligibly small, these bulk moduli lead to the eigenvalue 
pattern very sensitive to the small disturbances and hav- 
ing similarity in the closed-up maps. The existing physical 
flow regimes in the two-fluids flow such as the homo- 
geneous, slug, and separated flows are well represented 
by the three sets of real eigenvalues obtained in this paper. 
The acoustic speeds in the two-phase flow predicted by 
the present formulation showing excellent agreement 

with the experimental data suggest that the present theory 
can be further developed to explain the multi-dimensional 
two-phase flows. 
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